Link Search Menu Expand Document

IFoS PYQs 3

We will cover following topics

2008

2007

1) Solve the following LPP by graphical method: Maximize \(Z=5 x_{1}+7 x_{2}\) subject to \(x_{1}+x_{2} \leq 4\) \(3 x_{1}+8 x_{2} \leq 24\) \(10 x_{1}+7 x_{2} \leq 35\) \(x_{1}, x_{2} \geq 0\)

[10M]


2) Solve the following LPP by simplex method: Maximize \(Z=2 x_{1}+5 x_{2}+7 x_{3}\) Subject to \(\begin{array}{r} 3 x_{1}+2 x_{2}+4 x_{3} \leq 100 \\ x_{1}+4 x_{2}+2 x_{3} \leq 100 \\ x_{1}+x_{2}+3 x_{3} \leq 100 \\ x_{1}, x_{2}, x_{3}\geq0 \end{array}\)

[10M]


3) Solve the following minimal assignment problem:

\(Man\to\) 1 2 3 4
\(I\) 12 30 21 15
\(II\) 18 33 9 31
\(III\) 44 25 24 21
\(IV\) 23 30 28 14

[10M]

2006

1) Find the basic feasible solutions of the following system of equations in a linear programming problem \(\begin{array}{l} x_{1}+2 x_{2}+x_{3}=4 \\ 2 x_{1}+x_{2}+5 x_{3}=5 \end{array}\)

[10M]


2) TBC Use Simplex method to solve the following linear programming problem Maximize \(Z: 2 x_{1}-x_{2}+3 x_{3}\) subject to constraints \(3 x_{1}+x_{2}-2 x_{3} \leq 6\) \(2 x_{1}+5 x_{2}+x_{3} \leq 14\) \(x_{1}+4 x_{2}+2 x_{3} \leq 8\) \(x_{1}, x_{2}, x_{1} \quad \geq 0\)

[10M]

2005

1) Find the basic feasible solutions of the following system of equations in a linear programming problem \(x_{1}+2 x_{2}+x_{3}=4 2 x_{1}+x_{2}+5 x_{3}=5\) \(x_{1} \geq 0, j=1,2,3\)

[10M]


2) Solve the linear programming problem Find \(mm \left(8 x _{1}+6 x _{2}\right)\) subject to the constraints \(4 x_{1}+3 x_{2} \geq 18\) \(2 x_{1}+5 x_{2} \geq 16\) \(x_{1}, x_{2} \geq 0\) using graphical method. Show that more than one feasible solvtion will yield the minimum of the objective function. Interpret this fact geometrically

[10M]


3) Use simplex method to solve the following linear programming problem. Maximize \(Z=2 x_{1}=x_{2}+3 x_{3}\) subject to the constraints. \(3 x_{1}+x_{2}-2 x_{3} \leq 6\) \(2 x_{1}+5 x_{2}+x_{3} \leq 14\) \(x_{1}+4 x_{2}+2 x_{3} \leq 8\) \(x _{1+} x _{2}, x _{3} \geq 0\)

[10M]


< Previous Next >


Back to top Back to Top

Copyright © 2020 UPSC Maths WebApp.