Euler’s Equation of Motion
We will cover following topics
PYQs
Euler’s Equation Of Motion For Inviscid Flow
1) A sphere of radius \(R\), whose centre is at rest, vibrates radially in an infinte incompressible fluid of density \(\rho\), which is at rest at infinity. If the pressure at infinity is \(\Pi\), show that the pressure at the surface of the sphere at time \(t\) is
\(\Pi +\dfrac{1}{2}\rho \left\{ \dfrac{d^2R^2}{dt^2}+ \left(\dfrac{dR}{dt} \right)^2 \right\}\).
[2019, 15M]
Here the motion of the fluid will take place in such a manner so that each element of the fluid moves towards the centre. Hence the free surface would be spherical. Thus the fluid velocity \(v^{\prime}\) will be radial and hence \(v^{\prime}\) will be function of \(r^{\prime}\) (the radial distance from the centre of the sphere which is taken as origin), and time \(t\) only. Let \(p\) be pressure at a distance \(r^{\prime}.\)
Let \(P\) be the pressure on the surface of the sphere of radius \(R\) and \(V\) be the velocity there. Then the equation of continuity is:
\(r^{\prime 2} v^{\prime}=R^{2} V=F(t) … (1)\) From (1) \(\frac{\partial v^{\prime}}{\partial t}=\frac{F^{\prime}(t)}{r^{\prime 2}} … (2)\) Again equation of motion is: \(\frac{\partial v^{\prime}}{\partial t}+v^{\prime} \frac{\partial v^{\prime}}{\partial r^{\prime}}=-\frac{1}{\rho} \frac{\partial p}{\partial r^{\prime}}\) \(\implies\) \(-\frac{F^{\prime}(t)}{r^{\prime 2}}+\frac{\partial}{\partial r^{\prime}}\left(\frac{1}{2} v^{\prime 2}\right)=-\frac{1}{\rho} \frac{\partial p}{\partial r^{\prime}},\) (using (2)) … (3)
Integrating with respect to \(r^{\prime}\), (3) reduces to: \(-\frac{F^{\prime}(t)}{r^{\prime}}+\frac{1}{2} v^{\prime 2}=-\frac{p}{\rho}+C\), \(C\) being an arbitrary constant When \(r^{\prime}=\infty,\) then \(v^{\prime}=0\) and \(p=\Pi\) so that \(C=\Pi / \rho .\) Then, we get \(-\frac{F^{\prime}(t)}{r^{\prime}}+\frac{1}{2} v^{\prime 2}=\frac{\Pi-p}{\rho}\) \(\implies p=\Pi+\frac{1}{2} \rho\left[2 \frac{F^{\prime}(t)}{r^{\prime}}-v^{\prime 2}\right] \ldots(4)\) But \(p=P\) and \(v^{\prime}=V\) when \(r^{\prime}=\mathrm{R}\). Hence (4) gives:
\(\mathrm{P}=\Pi+\frac{1}{2} \rho\left[\frac{2}{\mathrm{R}}\left\{F^{\prime}(t)\right\}_{r^{\prime}=R}-\mathrm{V}^{2}\right] \ldots (5)\) Also \(V=d R / d t .\) Hence using \((1),\) we have
\[\begin{aligned} \left\{F^{\prime}(t)\right\}_{r^{\prime}=R} &=\frac{d}{d t}\left(R^{2} V\right)=\frac{d}{d t}\left(R^{2} \frac{d \mathrm{R}}{d t}\right)=\frac{d}{d t}\left(\frac{R}{2} \cdot \frac{d R^{2}}{d t}\right) \\ &=\frac{R}{2} \frac{d^{2} R^{2}}{d t^{2}}+\frac{1}{2} \frac{d R^{2}}{d t} \frac{d R}{d t}=\frac{R}{2} \frac{d^{2} R^{2}}{d t^{2}}+R\left(\frac{d R}{d t}\right)^{2} \end{aligned}\]Using the above values of \(V\) and \(\left\{F^{\prime}(t)\right\}_{r^{\prime}=R},(5)\) reduces to
\[\begin{aligned} P&=\Pi+\frac{1}{2} \rho\left[\frac{2}{R}\left\{\frac{R}{2} \frac{d^{2} R^{2}}{d t^{2}}+R\left(\frac{d R}{d t}\right)^{2}\right\}-\left(\frac{d R}{d t}\right)^{2}\right] \\ &=\Pi+\frac{1}{2} \rho\left[\frac{d^{2} R^{2}}{d t^{2}}+\left(\frac{d R}{d t}\right)^{2}\right] \end{aligned}\]Hence, proved.
2) A stream is rushing form a boiler through a conical pipe, the diameters of the ends of which are \(D\) and \(d\). If \(V\) and \(v\) be the corresponding velocities of the stream and if the motion is assumed to steady and diverging from the vertex of the cone, then prove that \(\dfrac{v}{V}=\dfrac{D^{2}}{d^{2}} e^{\left(u^{2}-v^{2}\right) / 2 K}\), where \(K\) is the pressure divided by the density and is constant.
[2017, 15M]
Let \(A B\) and \(A^{\prime} B^{\prime}\) be the ends of the conical pipe such that \(A^{\prime} B^{\prime}=d\) and \(A B=D .\) Let \(\rho_{1}\) and \(\rho_{2}\) be densities of the stream at \(A^{\prime} B^{\prime}\) and \(A B\). By principle of conservation of mass, the mass of the stream that enters the end \(A B\) and leaves at the end \(A^{\prime} B^{\prime}\) must be the same. Hence the equation of continuity is \(\pi(d / 2)^{2} v \rho_{1}=\pi(D / 2)^{2} V \rho_{2}\)
so that \(\frac{v}{V}=\frac{D^{2}}{d^{2}} \times \frac{\rho_{2}}{\rho_{1}} \ldots (1)\)
By Bernoulli’s theorem (in absence of external forces like gravity), we have
\(\int \frac{d p}{\rho}+\frac{1}{2} q^{2}=C \ldots (2)\)
Given that \(\quad p / \rho=k \quad\) so that
\[d p=k d \rho \ldots (3)\]\(\therefore\) (2) reduces to
\(k \int \frac{d \rho}{\rho}+\frac{1}{2} q^{2}=C\) (using (3))
Integrating above, we get
\(k \log \rho+q^{2} / 2=C\), \(C\) being an arbitrary constant
\(\begin{array}{lllll}\text {When } & q=v, & \rho=\rho_{1} & \text { and } & \text { when } & q=V, & \rho=\rho_{2} .\end{array}\)
Hence (4) yields
\(k \log \rho_{1}+v^{2} / 2=C \quad\) and \(\quad k \log \rho_{2}+V^{2 /} 2=C\)
Subtracting, \(k\left(\log \rho_{2}-\log \rho_{1}\right)+\left(V^{2}-v^{2}\right) / 2=0\)
\(\implies \log \left(\rho_{2} / \rho_{1}\right)=\left(v^{2}-V^{2}\right) 2 k \quad\) or \(\quad \rho_{2} / \rho_{1}=e^{\left(v^{2}-V^{2}\right) 2 k}\)
Using (5), (1) reduces to \(v / V=\left(D^{2} / d^{2}\right) \times e^{\left(v^{2}-V^{2}\right) / 2 k}\)
Hence, proved.
3) An infinite mass of fluid is acted on by a force \(\dfrac{\mu}{r^{3 / 2}}\) per unit mass directed to the origin. If initially the fluid is at rest and there is a cavity in the form of the sphere \(r=C\) in it, show the cavity will be filled up after an interval of time \(\left(\dfrac{2}{5 \mu}\right)^{\dfrac{1}{2}} \cdot C^{\dfrac{5}{4}}\).
[2009, 30M]
\(Method I:-\) At any time \(t,\) let \(v^{\prime}\) be the velocity at distance \(r^{\prime}\) from the centre. Again, let \(I\) be the radius of the cavity and \(v\) its velocity. Then the equation of continuity yields \(r^{\prime 2} v^{\prime}=r^{2} v\) When the radius of the cavity is \(r\), then \(\begin{aligned} \text { Kinetic energy } &=\int_{r}^{\infty} \frac{1}{2}\left(4 \pi r^{\prime 2} \rho d r^{\prime}\right) \cdot v^{\prime 2} \quad\left[\because \text { Kinetic energy }=\frac{1}{2} \times \text { mass } \times(\text { velocity })^{2}\right] \\ &=2 \pi \rho r^{4} v^{2} \int_{r}^{\infty} \frac{d r^{\prime}}{r^{\prime 2}}, \text { using }(1) \\ &=2 \pi \rho r^{3} v^{2} \end{aligned}\) The initial kinetic energy is zero. Let \(V\) be the work function (or force potential) due to external forces. Then, we have \(-\frac{\partial V}{\partial r^{\prime}}=\frac{\mu}{r^{\prime 3 / 2}} \quad \text { so that } \quad V=\frac{2 \mu}{r^{1 / 2}}\) \(\therefore\) the work done \(=\int_{r}^{c} V d m, d m\) being the elementary mass \(=\int_{r}^{c}\left(\frac{2 \mu}{r^{\prime 1 / 2}}\right) \cdot 4 \pi r^{\prime 2} d r^{\prime} \rho=8 \pi \mu \rho \int_{T}^{c} r^{\prime 3 / 2} d r^{\prime}=\frac{16}{5} \pi \rho \mu\left(c^{5 / 2}-r^{5 / 2}\right)\) We now use energy equation, namely, Increase in kinetic energy \(=\) work done This \(\Rightarrow \quad 2 \pi \rho r^{3} v^{2}-0=(16 / 5) \times \pi \rho \mu\left(c^{5 / 2}-r^{52}\right)\) \(\therefore\) \(v=\frac{d r}{d t}=-\left(\frac{8 \mu}{5}\right)^{1 / 2} \frac{\left(c^{5 / 2}-r^{5 / 2}\right)^{1 / 2}}{r^{3 / 2}}\) wherein negative sign is taken because \(r\) decreases as \(t\) increases. Let \(T\) be the time of filling up the cavity. Then (2) gives \(\int_{0}^{T} d t=-\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{C}^{0} \frac{r^{3 / 2} d r}{\sqrt{\left(c^{5 / 2}-r^{5 / 2}\right)}} \quad \text { or } \quad T=\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{0}^{c} \frac{r^{3 / 2} d r}{\sqrt{\left(c^{5 / 2}-r^{5 / 2}\right)}}\) \(\begin{array}{l} \text { Put } \quad r^{5 / 2}=c^{5 / 2} \sin ^{2} \theta \quad \text { so that } \quad(5 / 2) \times r^{3 / 2} d r=2 c^{5 / 2} \sin \theta \cos \theta d \theta \\ \therefore \quad T=\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{0}^{\pi / 2} \frac{4}{5} c^{5 / 4} \sin \theta d \theta=\left(\frac{2}{5 \mu}\right)^{1 / 2} c^{5 / 4} \end{array}\) Second Method:- Here the motion of the fluid will take place in such a manner so that each element of the fluid moves towards the centre. Hence the free surface would be spherical. Thus the fluid velocity \(v^{\prime}\) will be radial and hence \(v^{\prime}\) will be function of \(r^{\prime}\) (the radial distance from the centre of the sphere which is taken as origin) and time \(t\). Also, let \(v\) be the velocity at a distance \(r\). Then the equation of continuity is \(\begin{aligned} r^{\prime 2} v^{\prime}=F(t) &=r^{2} v \\ & \frac{\partial v^{\prime}}{\partial t}=\frac{F^{\prime}(t)}{r^{\prime 2}} . \end{aligned}\) From (1), The equation of motion is of \(\begin{array}{c} \frac{\partial v^{\prime}}{\partial t}+v^{\prime} \frac{\partial v^{\prime}}{\partial r^{\prime}}=-\frac{\mu}{r^{3 / 2}}-\frac{1}{\rho} \frac{\partial p}{\partial r^{\prime}} \\ \frac{F^{\prime}(t)}{r^{\prime 2}}+\frac{\partial}{\partial r^{\prime}}\left(\frac{1}{2} v^{\prime 2}\right)=-\frac{\mu}{r^{\prime 3 / 2}}-\frac{1}{\rho} \frac{\partial p}{\partial r^{\prime}}, \text { using }(2) \end{array}\) Integrating (3) with respect to \(r^{\prime}\), we have \(-\frac{F^{\prime}(t)}{r^{\prime}}+\frac{1}{2} v^{\prime 2}=\frac{2 \mu}{r^{1 / 2}}-\frac{p}{\rho}+C, C\) being an arbitrary constant When \(r^{\prime}=\infty, v^{\prime}=0, p=0 .\) So from \((4), C=0 .\) Then (4) becomes \(-\frac{F^{\prime}(t)}{r^{\prime}}+\frac{1}{2} v^{\prime 2}=\frac{2 \mu}{r^{\prime 1 / 2}}-\frac{p}{\rho}\) Now when \(r^{\prime}=r, v^{\prime}=v\) and \(p=0 .\) So (5) reduces to \(-\frac{F^{\prime}(t)}{r}+\frac{1}{2} v^{\prime 2}=\frac{2 \mu}{r^{1 / 2}}\) Now, (1) \(\Rightarrow \quad F(t)=r^{2} v \quad \Rightarrow \quad F^{\prime}(t)=2 r v(d r / d t)+r^{2}(d v / d t)\) or \(F^{\prime}(t)=2 r v \frac{d r}{d t}+r^{2} \frac{d v}{d r} \frac{d r}{d t}=2 r v^{2}+r^{2} v \frac{d v}{d r}, \quad\) as \(\quad \frac{d r}{d t}=v\) Hence (6) gives
\(-\frac{1}{r}\left[2 r v^{2}+r^{2} v \frac{d v}{d r}\right]+\frac{v^{2}}{2}=\frac{2 \mu}{r^{1 / 2}} \quad \text { or } \quad r v \frac{d v}{d r}+\frac{3}{2} v^{2}=-\frac{2 \mu}{r^{1 / 2}}\) Multiplying both sides by \(2 r^{2},\) the above equation can be written as \(2 r^{3} v d v+3 r^{2} v^{2} d r=-4 \mu r^{3 / 2} d r \quad \text { or } \quad d\left(r^{3} v^{2}\right)=-4 \mu r^{3 / 2} d r\) Integrating. \(r^{3} v^{2}=-(8 \mu / 5) r^{5 / 2}+D, D\) being an arbitrary constant When \(r=c, v=0 .\) So (7) gives \(D=(8 \mu / 5) c^{5 / 2} .\) Hence (7) reduces to or \(\begin{array}{c} r^{3} v^{2}=(8 \mu / 5) \times\left(c^{5 / 2}-r^{5 / 2}\right) \\ v=\frac{d r}{d t}=-\left(\frac{8 \mu}{5}\right)^{1 / 2}\left(\frac{c^{5 / 2}-r^{5 / 2}}{r^{3}}\right)^{1 / 2} \end{array}\) taking negative sign for \(d r / d t\) since velocity increases as \(r\) decreases. Let \(T\) be the time of filling up the cavity, then \(T=-\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{c}^{0} \frac{r^{3 / 2} d r}{\left(c^{5 / 2}-r^{5 / 2}\right)^{1 / 2}}\) Let \(r^{5 / 2}=c^{5 / 2} \sin ^{2} \theta\) so that \((5 / 2) \times r^{3 / 2} d r=c^{5 / 2} \sin \theta \cos \theta d \theta\) or \(\begin{array}{c} T=\frac{4}{5}\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{0}^{\pi / 2} \frac{c^{5 / 2} \sin \theta \cos \theta}{c^{5 / 4} \cos \theta} d \theta=\frac{4 c^{5 / 4}}{5}\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{0}^{\pi / 2} \sin \theta d \theta \\ T=(2 / 5 \mu)^{1 / 2} \times c^{5 / 4} \end{array}\)
4) Liquid is contained between two parallel planes, the free surface is a circular cylinder of radius \(a\) whose axis is perpendicular to the planes. All the liquid within a concentric circular circular cylinder of radius \(b\) is suddenly annihilated; prove that if \(P\) be the pressure at the outer surface, the initial pressure at any point on the liquid distant \(r\) from the centre is \(p \dfrac{\log r - \log b}{\log a - \log b}\).
[2006, 30M]
5) State the conditions under which Euler’s equation of motion can be integrated. Show that \(-\dfrac{\partial \phi}{\partial t}+\dfrac{1}{2} q^{2}+V \int \dfrac{d p}{\rho}=F(t)\), where the symbols have their usual meaning.
[2005, 30M]
6) An infinite mass of fluid is acted on by a force \(\dfrac{\mu}{r^{3 / 2}}\) per unit mass directed to the origin. If initially the fluid is at rest and there is a cavity in the form of the sphere \(r=C\) in it, show the cavity will be filled up after an interval of time \(\left(\dfrac{2}{5 \mu}\right)^{\dfrac{1}{2}} \cdot C^{\dfrac{5}{4}}\).
[2003, 30M]
\(Method I:-\) At any time \(t,\) let \(v^{\prime}\) be the velocity at distance \(r^{\prime}\) from the centre. Again, let \(I\) be the radius of the cavity and \(v\) its velocity. Then the equation of continuity yields \(r^{\prime 2} v^{\prime}=r^{2} v\) When the radius of the cavity is \(r\), then \(\begin{aligned} \text { Kinetic energy } &=\int_{r}^{\infty} \frac{1}{2}\left(4 \pi r^{\prime 2} \rho d r^{\prime}\right) \cdot v^{\prime 2} \quad\left[\because \text { Kinetic energy }=\frac{1}{2} \times \text { mass } \times(\text { velocity })^{2}\right] \\ &=2 \pi \rho r^{4} v^{2} \int_{r}^{\infty} \frac{d r^{\prime}}{r^{\prime 2}}, \text { using }(1) \\ &=2 \pi \rho r^{3} v^{2} \end{aligned}\) The initial kinetic energy is zero. Let \(V\) be the work function (or force potential) due to external forces. Then, we have \(-\frac{\partial V}{\partial r^{\prime}}=\frac{\mu}{r^{\prime 3 / 2}} \quad \text { so that } \quad V=\frac{2 \mu}{r^{1 / 2}}\) \(\therefore\) the work done \(=\int_{r}^{c} V d m, d m\) being the elementary mass \(=\int_{r}^{c}\left(\frac{2 \mu}{r^{\prime 1 / 2}}\right) \cdot 4 \pi r^{\prime 2} d r^{\prime} \rho=8 \pi \mu \rho \int_{T}^{c} r^{\prime 3 / 2} d r^{\prime}=\frac{16}{5} \pi \rho \mu\left(c^{5 / 2}-r^{5 / 2}\right)\) We now use energy equation, namely, Increase in kinetic energy \(=\) work done This \(\Rightarrow \quad 2 \pi \rho r^{3} v^{2}-0=(16 / 5) \times \pi \rho \mu\left(c^{5 / 2}-r^{52}\right)\) \(\therefore\) \(v=\frac{d r}{d t}=-\left(\frac{8 \mu}{5}\right)^{1 / 2} \frac{\left(c^{5 / 2}-r^{5 / 2}\right)^{1 / 2}}{r^{3 / 2}}\) wherein negative sign is taken because \(r\) decreases as \(t\) increases. Let \(T\) be the time of filling up the cavity. Then (2) gives \(\int_{0}^{T} d t=-\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{C}^{0} \frac{r^{3 / 2} d r}{\sqrt{\left(c^{5 / 2}-r^{5 / 2}\right)}} \quad \text { or } \quad T=\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{0}^{c} \frac{r^{3 / 2} d r}{\sqrt{\left(c^{5 / 2}-r^{5 / 2}\right)}}\) \(\begin{array}{l} \text { Put } \quad r^{5 / 2}=c^{5 / 2} \sin ^{2} \theta \quad \text { so that } \quad(5 / 2) \times r^{3 / 2} d r=2 c^{5 / 2} \sin \theta \cos \theta d \theta \\ \therefore \quad T=\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{0}^{\pi / 2} \frac{4}{5} c^{5 / 4} \sin \theta d \theta=\left(\frac{2}{5 \mu}\right)^{1 / 2} c^{5 / 4} \end{array}\) Second Method:- Here the motion of the fluid will take place in such a manner so that each element of the fluid moves towards the centre. Hence the free surface would be spherical. Thus the fluid velocity \(v^{\prime}\) will be radial and hence \(v^{\prime}\) will be function of \(r^{\prime}\) (the radial distance from the centre of the sphere which is taken as origin) and time \(t\). Also, let \(v\) be the velocity at a distance \(r\). Then the equation of continuity is \(\begin{aligned} r^{\prime 2} v^{\prime}=F(t) &=r^{2} v \\ & \frac{\partial v^{\prime}}{\partial t}=\frac{F^{\prime}(t)}{r^{\prime 2}} . \end{aligned}\) From (1), The equation of motion is of \(\begin{array}{c} \frac{\partial v^{\prime}}{\partial t}+v^{\prime} \frac{\partial v^{\prime}}{\partial r^{\prime}}=-\frac{\mu}{r^{3 / 2}}-\frac{1}{\rho} \frac{\partial p}{\partial r^{\prime}} \\ \frac{F^{\prime}(t)}{r^{\prime 2}}+\frac{\partial}{\partial r^{\prime}}\left(\frac{1}{2} v^{\prime 2}\right)=-\frac{\mu}{r^{\prime 3 / 2}}-\frac{1}{\rho} \frac{\partial p}{\partial r^{\prime}}, \text { using }(2) \end{array}\) Integrating (3) with respect to \(r^{\prime}\), we have \(-\frac{F^{\prime}(t)}{r^{\prime}}+\frac{1}{2} v^{\prime 2}=\frac{2 \mu}{r^{1 / 2}}-\frac{p}{\rho}+C, C\) being an arbitrary constant When \(r^{\prime}=\infty, v^{\prime}=0, p=0 .\) So from \((4), C=0 .\) Then (4) becomes \(-\frac{F^{\prime}(t)}{r^{\prime}}+\frac{1}{2} v^{\prime 2}=\frac{2 \mu}{r^{\prime 1 / 2}}-\frac{p}{\rho}\) Now when \(r^{\prime}=r, v^{\prime}=v\) and \(p=0 .\) So (5) reduces to \(-\frac{F^{\prime}(t)}{r}+\frac{1}{2} v^{\prime 2}=\frac{2 \mu}{r^{1 / 2}}\) Now, (1) \(\Rightarrow \quad F(t)=r^{2} v \quad \Rightarrow \quad F^{\prime}(t)=2 r v(d r / d t)+r^{2}(d v / d t)\) or \(F^{\prime}(t)=2 r v \frac{d r}{d t}+r^{2} \frac{d v}{d r} \frac{d r}{d t}=2 r v^{2}+r^{2} v \frac{d v}{d r}, \quad\) as \(\quad \frac{d r}{d t}=v\) Hence (6) gives
\(-\frac{1}{r}\left[2 r v^{2}+r^{2} v \frac{d v}{d r}\right]+\frac{v^{2}}{2}=\frac{2 \mu}{r^{1 / 2}} \quad \text { or } \quad r v \frac{d v}{d r}+\frac{3}{2} v^{2}=-\frac{2 \mu}{r^{1 / 2}}\) Multiplying both sides by \(2 r^{2},\) the above equation can be written as \(2 r^{3} v d v+3 r^{2} v^{2} d r=-4 \mu r^{3 / 2} d r \quad \text { or } \quad d\left(r^{3} v^{2}\right)=-4 \mu r^{3 / 2} d r\) Integrating. \(r^{3} v^{2}=-(8 \mu / 5) r^{5 / 2}+D, D\) being an arbitrary constant When \(r=c, v=0 .\) So (7) gives \(D=(8 \mu / 5) c^{5 / 2} .\) Hence (7) reduces to or \(\begin{array}{c} r^{3} v^{2}=(8 \mu / 5) \times\left(c^{5 / 2}-r^{5 / 2}\right) \\ v=\frac{d r}{d t}=-\left(\frac{8 \mu}{5}\right)^{1 / 2}\left(\frac{c^{5 / 2}-r^{5 / 2}}{r^{3}}\right)^{1 / 2} \end{array}\) taking negative sign for \(d r / d t\) since velocity increases as \(r\) decreases. Let \(T\) be the time of filling up the cavity, then \(T=-\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{c}^{0} \frac{r^{3 / 2} d r}{\left(c^{5 / 2}-r^{5 / 2}\right)^{1 / 2}}\) Let \(r^{5 / 2}=c^{5 / 2} \sin ^{2} \theta\) so that \((5 / 2) \times r^{3 / 2} d r=c^{5 / 2} \sin \theta \cos \theta d \theta\) or \(\begin{array}{c} T=\frac{4}{5}\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{0}^{\pi / 2} \frac{c^{5 / 2} \sin \theta \cos \theta}{c^{5 / 4} \cos \theta} d \theta=\frac{4 c^{5 / 4}}{5}\left(\frac{5}{8 \mu}\right)^{1 / 2} \int_{0}^{\pi / 2} \sin \theta d \theta \\ T=(2 / 5 \mu)^{1 / 2} \times c^{5 / 4} \end{array}\)