Link Search Menu Expand Document

IAS PYQs 1

We will cover following topics

2000

1) Use the mean value theforem to prove that 27<log1.4<25.

[10M]


2) Let f(x)={0,x is irrational 1,x is rational  show that f is not Riemann-integrable on [a,b]

[10M]


3) Show that dndxn(logxx)=(1)nn!xn+1(logx112131n)

[10M]


4) Find constants a and b for which F(a,b)=0π{sinx(ax2+bx)}2dx is a minimum.

[10M]

1999

1) Determine the set of all points where the function f(x)=x1+|x| is differentiable.

[10M]


2) Find three asymptotes of the curve x3+2x2y4xy28y34x+8y10=0. Also find the intercept of one asymptote between the other two.

[10M]


3) Find the dimensions of a right circular cone of minimum volume which can be circumscribed about a sphere of radius a.

[10M]


4) If f is Riemann integrable over every interval of finite length and f(x+y)=f(x)+f(y) for every pair of real numbers x and y, show that f(x)=cx where c=f(1).

[10M]


5) Show that the area bounded by cissoid x=asin2t,y=asin3tcost and its asymptote is 3πa24.

[10M]


6) Show that xm1yn1dxdy over the positive quadrant of the ellipse x2a2+y2b2=1 is ambn4Γ(m2)Γ(n2)Γ(m2+n2+1)

[10M]

1998

1) Find the asymptotes of the curve (2x3y+1)2(x+y)8x+2y9=0 and show that they intersect the curve again in three points which lie on a straight line.

[10M]


2) A thin closed rectangular box is to have one edge n times the length of another edge and the volume of the box is given to be v. Prove that the least surface s is given by ns3=54(n+1)2v2.

[10M]


3) If x+y=1, prove that dndxn(xnyn)=n![yn(n1)2yn1x+(n2)2yn2x2+...+(1)nxn]

[10M]


4) Show that 0xp1(1+x)p+qdx=B(p,q).

[10M]


5) Show that: dxdy(1x2y2z2)=π28, integral being extended over all positive values of x,y,z for which the expression is real.

[10M]


6) The ellipse b2x2+a2y2=a2b2 is divided into two parts by the line x=12a , the smaller part is rotated through four right angles about this line. Prove that the volume generated is

πa2b{334π3}.

[10M]

1997

1) Suppose

f(x)=17x12124x9+16x3129x2+x1

Determine ddx(f1) at x=1 if it exists.

[10M]


2) Prove that the volume of the greatest parallelopiped that can be inscribed in the ellipsoid x2a2+y2b2+z2c2=1 is 8abc33

[10M]


3) Show that the asymptotes of the curve (x2y2)(y24x2)+6x35x2y3xy2+zy3x2+3xy1=0 cut the curve again in eight points which lie on a circle of radius 1 .

[10M]


4) An area bounded by a quadrant of a circle of radius a and the tangents at its extremities revolves about one of the tangents. Find the volume so generated.

[10M]


5) Show how the change of order in the integral 00exysinxdxdy leads to the evaluation of 0sinxxdx, Hence evaluate it.

[10M]


6) Show that in nn+12=π22n1 where n>0 and n denotes gamma function.

[10M]

1996

1) Find the asymptotes of the curve 4(x4+y4)17x2y24x(4y2x2)+2(x22)=0 and show that they pass through the points of intersection of the curve with the ellipse x2+4y2=4

[15M]


2) Show that any continuous function defined for all real x and satisfying the equation f(x)=f (2x+1) for all x must be a constant function.

[15M]


3) Show that the maximum and minimum of the radii vectors of the sections of the surface (x2+y2+z2)2=x2a2+y2b2+z2c2 by the plane λx+μy+vz=0 are given by the equation a2λ21a2r2+b2μ21b2r2+c2v21c2r2=0

[15M]


4) If u=f(xy,yz,zx), prove that xux+yuy+zuz=0

[12M]


5) Evaluate 00eyydxdy

[12M]


6) The area cut off from the parabola y2=4ax by the chord joining the vertex to an end of the latus rectum is rotated through four right angles about the chord. Find the volume of the solid so formed.

[12M]

1995

1) If g is the inverse of f and f(x)=11+x3, prove that g(x)=1+[g(x)]3.

[20M]


2) Taking the nth derivative of (xn)2 in two different ways, show that 1+n212+n2(n1)21222+n2(n1)2(n2)2122232+to(n+1) terms =(2n)!(n!)2

[20M]


3) Let f(x,y), which possesses continuous partial derivatives of second order, be a homogeneous function of x and y of degree n. Prove that x2fxx+2xyfxy+y2fyy=n(n1)f

[20M]


4) Find the area bounded by the curve (x24+y29)2=x24y29

[20M]


5) Let f(x),x1 be such that the area bounded by the curve y=f(x) and the lines x=1,x=b is equal to 1+b22 for all b1, Does f attain its minimum ? If so what is its value?

[20M]


6) Show that Γ(1n)Γ(2n)Γ(3n).Γ(n1n)=(2π)nn12

[20M]


< Previous Next >