Sources and Sinks
We will cover following topics
PYQs
Sources And Sinks
1) Two sources, each of strength \(m\), are placed at the point at the points \((-a,0)\), \((a,0)\) and a sink of strength \(2m\) at origin. Show that the stream lines are the curves \((x^2+y^2)^2\)= \(a^2(x^2-y^2+\lambda xy)\), where \(\lambda\) is variable parameter.
Show also that the fluid speed at any point is \((2ma^2)/(r_1r_2r_3)\), where \(r_1\), \(r_2\) and \(r_3\) are the distances of the points from the sources and the sink, respectively.
[2019, 20M]
First Part: The complex potential \(w\) at any point \(P(z)\) is given by \(w=-m \log (z-a)-m \log (z+a)+2 m \log z \ldots (1)\)
\[\implies w=m\left[\log z^{2}-\log \left(z^{2}-a^{2}\right)\right]\]\(\implies \phi+i \psi=m\left[\log \left(x^{2}-y^{2}+2 b y\right)-\log \left(x^{2}-y^{2}-a^{2}+2 b y\right)\right],\) as \(z=x+i y\)
Equating the imaginary parts, we have \(\begin{array}{c} \psi=m\left[\tan ^{-1}\left\{2 x y /\left(x^{2}-y^{2}\right)\right\}-\tan ^{-1}\left\{2 x y /\left(x^{2}-y^{2}-a^{2}\right)\right\}\right] \\ \psi=m \tan ^{-1}\left[\frac{-2 a^{2} x y}{\left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)}\right], \text { on simplification } \end{array}\)
The desired streamlines are given by \(\psi=\) constant \(=m \tan ^{-1}(-2 / \lambda) .\) Then we obtain
\[(-2 / \lambda)=\left(-2 a^{2} x y\right) /\left[\left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)\right] \quad \text { or } \quad\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}+\lambda x y\right)\]Second Part: We have,
\[\begin{aligned} &\begin{aligned} \frac{d w}{d z} &=-\frac{m}{z-a}-\frac{m}{z+a}+\frac{2 m}{z}=-\frac{2 a^{2} m}{z(z-a)(z+a)} \\ \therefore~ &q=\left\vert\frac{d w}{d z}\right\vert=\frac{2 a^{2} m}{\vert z \\vert z-a\vert\vert z+a\vert}=\frac{2 a^{2} m}{r_{1} r_{2} r_{3}} \end{aligned}\\ &\begin{array}{llll} \text { where } & r_{1}=\vert z-a\vert, & r_{2}=\vert z+a\vert & \text { and } & r_{3}=\vert z\vert \end{array} \end{aligned}\]2) If fluid fills the region of space on the positive side of the \(x-axis\), which is a right boundary and if there be a sources \(m\) at the point \((0, a)\) and an equal sink at \((0, b)\) and if the pressure on the negative side be the same as the pressure at infinity, show that the resultant pressure on the boundary is \(\dfrac{\pi \rho m^{2}(a-b)^{2}}{\{2 a b(a+b)\}}\) where \(\rho\) is the density of the fluid.
[2013, 15M]
The object system consists of source \(+m\) at \(A\) \((o,a)\), i-e. at \(z=ia\) and sink \(-m\) at \(z=i b\). The image system consists of source \(+m\) at \(A^{\prime}\left(z ={-i a}\right)\) and sink \(-m\) at \(B^{\prime}(z=-i b)\) w.r.t the positive line \(OX\) which is rigid boundary.
The complex potential due to object system with rigid boundary is equivalent to the object system and its image system with no rigid boundary.
\[\begin{aligned} \therefore w&=-m \log \left(z-i a\right)+m \log (z-i b)\\ &- m \log (z+i a)+m \log (z+i b) \\ \implies &=-m \log \left(z^{2}+a^{2}\right)+m \log \left(z^{2}+b^{2}\right) \end{aligned}\]Now, \(\begin{aligned} \frac{dw}{d z} &=-2 m \\ &=\left[\frac{1}{z^{2}+a^{2}}-\frac{1}{z^{2}+b^{2}}\right] \\ &=\frac{2 m z\left(a^{2}-b^{2}\right)}{\left(z^{2}+a^{2}\right)\left(2^{2}+b^{2}\right)} \\ \implies q &=\vert\frac{d \omega}{d z}\ \vert =\frac{2 m\left(a^{2}-b^{2}\right) \vert z \vert }{\vertz^{2}+a^{2}\ \vert \vertz^{2}+b\ \vert } \end{aligned}\)
For any point on \(x\) -axis, we have \(z=x\) so that \(q=\frac{2 m x\left(a^{2}-b^{2}\right)}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}\)
This is the expression for velocity at any point on \(x\)-axis. Let \(P_{0}\) be the pressure at \(x=\infty\). By Bernoulli equation for steady motion.
\[\therefore \quad \frac{P}{\rho}+\frac{1}{2} q^{2}=c\]In view of \(p=\rho_{0}, q=0\) when \(x=\infty\) we get \(c=p_{0} / \rho\). \(\frac{P_{0}-P}{\rho}=\frac{1}{2} q^{2}\)
Required pressure \(P\) on boundary is given by:
\[\begin{aligned} P &=\int_{-\infty}^{\infty}\left(P_{0}-P\right) d x \\ &=\int_{-\infty}^{\infty} \frac{1}{2} \rho q^{2} d x \\ &=\frac{1}{2} \rho \int_{-\infty}^{\infty} \frac{4 m^{2} x^{2}\left(a^{2}-b^{2}\right)^{2}}{\left(x^{2}+a^{2}\right)^{2}\left(x^{2}+b^{2}\right)^{2}} dx \\ &=4 \rho m^{2}\left(a^{2}-b^{2}\right)^{2} \int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)^{2}\left(x^{2}+b^{2}\right)^{2}} \\ &=4 m^{2} \rho \int_{0}^{\infty}\left[\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\left\{\frac{1}{x^{2}+b^{2}}-\frac{1}{x^{2}+a^{2}}\right\}-\frac{a^{2}}{\left(x^{2}+a^{2}\right)^{2}}\right. \left.-\frac{b^{2}}{\left(x^{2}+b^{2}\right)^{2}}\right] d x. \\ &= 4 m^{2} f\left[\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\left\{\frac{\pi}{2 b}-\frac{\pi}{2 a}\right\}-\frac{\pi}{4 a}-\frac{\pi}{4 b}\right] \\ &=\frac{\pi \rho m^{2}(a-b)^{2}}{a b(a+b)} \\ &= 4 m^{2} f\left[\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\left\{\frac{\pi}{2 b}-\frac{\pi}{2 a}\right\}-\frac{\pi}{4 a}-\frac{\pi}{4 b}\right] \\ &=\frac{\pi \rho m^{2}(a-b)^{2}}{a b(a+b)} \end{aligned}\](We have used below results) \(\begin{aligned} \int_{0}^{\infty} \frac{d x}{x^{2}+a^{2}} &= \left[\frac{1}{a} \tan -\frac{x}{a}\right]_{0}^{\infty} \\ &=\frac{\pi}{2 a} \\ \text{Also }, \int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}&=\frac{1}{a^{3}} \int_{0}^{\infty} \cos ^{2} \theta d \theta ; x=a \tan \theta \\ &=\frac{x^{4}}{2 a^{3}} \int_{0}^{\pi / 2}(1+\cos 2 \theta) d \theta=\frac{\pi}{2} \cdot \frac{1}{2 a^{3}} \\&=\frac{\pi}{4 a^{3}} \end{aligned}\)
3) Two sources, each of strength \(m\) are placed at the point \((-a, 0)\), \((a, 0)\) and a sink of strength \(2m\) is at the origin. Show that the stream lines are the curves: \(\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}+\lambda x y\right)\) where \(\lambda\) is a variable parameter. Show also that the fluid speed at any point is \(\left(2 m a^{2}\right)/\left(r_{1} r_{2} r_{3}\right)\), where \(r_{1} r_{2}\) and \(r_{3}\) are the distance of the points from the source and the sink.
[2009, 12M]
First Part:
The complex potential \(w\) at any point \(P(z)\) is given by:
\(w=-m \log (z-a)-m \log (z+a)+2 m \log z \quad \cdots \quad (1)\) or, \(w=m\left[\log z^{2}-\log \left(z^{2}-a^{2}\right)\right]\) or \(\phi+i \psi=m\left[\log \left(x^{2}-y^{2}+2 i x y\right)-\log \left(x^{2}-y^{2}-a^{2}+2 i x y\right)\right],\) as \(z=x+i y\)
Equating the imaginary parts, we have \(\begin{array}{c} \psi=m\left[\tan ^{-1}\left\{2 x y /\left(x^{2}-y^{2}\right)\right\}-\tan ^{-1}\left\{2 x y /\left(x^{2}-y^{2}-a^{2}\right)\right\}\right] \\ \psi=m \tan ^{-1}\left[\frac{-2 a^{2} x y}{\left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)}\right], \text { on simplification. } \end{array}\)
The desired streamlines are given by \(\psi=\) constant \(=m \tan ^{-1}(-2 / \lambda)\). Then we obtain \((-2 / \lambda)=\left(-2 a^{2} x y\right) /\left[\left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)\right] \\ \text { or } \\\ \left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}+\lambda x y\right)\)
Second Part: From (1), we have
\[\frac{d w}{d z}=-\frac{m}{z-a}-\frac{m}{z+a}+\frac{2 m}{z}=-\frac{2 a^{2} m}{z(z-a)(z+a)}\]\(q=\vert\frac{d w}{d z}\ \vert =\frac{2 a^{2} m}{ \vert z \vert \vert z-a \vert \vert z+a \vert }=\frac{2 a^{2} m}{r_{1} r_{2} r_{3}}\), where
\(r_{1}= \vert z-a \vert\), \(r_{2}= \vert z+a \vert\) and \(r_{3}= \vert z \vert\)
4) Let the fluid fills the region \(x \geq 0\) (right half of \(d\) plane). Let a source \(\alpha\) be \(\left(0, y_{1}\right)\) and equal sink at \(\left(0, y_{2}\right), y_{1}>y_{2}\). Let the pressure be same as pressure infinity i.e., \(p_{0}\). Show that the resultant pressure on the boundary \(y-axis\) is \(\pi \rho \alpha^{2}\left(y_{1}-y_{2}\right)^{2} / 2 y_{1} y_{2}\left(y_{1}+y_{2}\right)\), \(\rho\) being the density of the fluid.
[2008, 30M]
5) Two sources, each of strength \(m\) are placed at the points \((-a, 0)\) and \((a, 0)\) and a sink of strength \(2m\) is placed at the origin. Show that the stream lines are the curves \(\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}+\lambda x y\right)\), where \(\lambda\) is a variable parameter. Also show that fluid speed at any point is \(\dfrac{2 m a^{2}}{r_{1} r_{2} r_{3}}\) where \(r_{1} r_{2}\) and \(r_{1}\) are respectively the distance of the point from the sources and sink.
[2003, 15M]
First Part:
The complex potential \(w\) at any point \(P(z)\) is given by:
\(w=-m \log (z-a)-m \log (z+a)+2 m \log z \quad \cdots \quad (1)\) or, \(w=m\left[\log z^{2}-\log \left(z^{2}-a^{2}\right)\right]\) or \(\phi+i \psi=m\left[\log \left(x^{2}-y^{2}+2 i x y\right)-\log \left(x^{2}-y^{2}-a^{2}+2 i x y\right)\right],\) as \(z=x+i y\)
Equating the imaginary parts, we have \(\begin{array}{c} \psi=m\left[\tan ^{-1}\left\{2 x y /\left(x^{2}-y^{2}\right)\right\}-\tan ^{-1}\left\{2 x y /\left(x^{2}-y^{2}-a^{2}\right)\right\}\right] \\ \psi=m \tan ^{-1}\left[\frac{-2 a^{2} x y}{\left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)}\right], \text { on simplification. } \end{array}\)
The desired streamlines are given by \(\psi=\) constant \(=m \tan ^{-1}(-2 / \lambda)\). Then we obtain \((-2 / \lambda)=\left(-2 a^{2} x y\right) /\left[\left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)\right] \\ \text { or } \\\ \left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}+\lambda x y\right)\)
Second Part: From (1), we have
\[\frac{d w}{d z}=-\frac{m}{z-a}-\frac{m}{z+a}+\frac{2 m}{z}=-\frac{2 a^{2} m}{z(z-a)(z+a)}\]\(q=\vert\frac{d w}{d z}\ \vert =\frac{2 a^{2} m}{ \vert z \vert \vert z-a \vert \vert z+a \vert }=\frac{2 a^{2} m}{r_{1} r_{2} r_{3}}\), where
\(r_{1}= \vert z-a \vert\), \(r_{2}= \vert z+a \vert\) and \(r_{3}= \vert z \vert\)