Link Search Menu Expand Document

Vortex Motion

We will cover following topics

Vortex Motion


PYQs

Vortex Motion

1) Does a fluid with velocity \(q=\left[z-\dfrac{2 x}{r}, 2 y-3 z-\dfrac{2 y}{r}, x-3 y-\dfrac{2 z}{r}\right]\) possess vorticity, where \(q(u, v, w)\) is the velocity in the Cartesian frame \(\vec{r}(x, y, z)\) and \(r^{2}=x^{2}+y^{2}+z^{2}\)? What is the circulation in the circle \(x^{2}+y^{2}=9\), \(z=0\)?

[2016, 10M]

Given,

(i) Calculation of vorticity:

velocity \(\vec{q}=\left(z-\frac{2 x}{r}\right) \hat{i}+\left(2 y-3 z-\frac{2 y}{r}\right) \hat{j}+\left(x-3 y-\frac{2 z}{r}\right) \hat{k}\) \(=u \hat{i}+v \hat{j}+\omega \hat{k}\)

Now,

\[\nabla \times \vec{q}=\begin{vmatrix}\hat{i} & \hat{j} & \dot{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z-\frac{2 x}{r} & 2 y-3 z-\frac{2 y}{r} & x-3 y-\frac{2 z}{r}\end{vmatrix}\]

So,

\[\begin{aligned} \nabla \times \vec{q}=& \hat{i}\left(-3+\frac{2 z}{r^{2}} \times \frac{y}{r}+3-\frac{2 y}{r^{2}} \times \frac{z}{r}\right)-\hat{j}\left(1+\frac{2 z}{r^{2}} \times \frac{x}{\sigma}-1-\frac{2 x}{r^{2}} \times \frac{z}{r}\right) \\ &+\hat{k}\left(+\frac{2 y}{r^{2}} \times \frac{x}{r}-\frac{2 x}{r^{2}} \times \frac{y}{\sigma}\right) \\ =& 0 \end{aligned}\]

\(\therefore\) fluid does not possess vorticity.

(ii) Calculation of circulation:

Given,

\(u=z-\frac{2x}{r}\), \(v=2y-3z-\frac{2y}{r}\), \(w=x-3y-\frac{2z}{r} \ldots (1)\)
\(C: x^2+y^2=9, z=0\)

Let \(x= 3 \cos \theta\), \(y= 3 \sin \theta\), \(z=0 \ldots (2)\)

\(\implies\) \(dx= -3 \sin \theta d \theta\), \(dy= -3 \cos \theta d \theta\), \(dz=0 \ldots (3)\)

Now, the circulation around the circle \(C\) is given by:

\(\Gamma=\int_{C} \vec{q} \cdot d \vec{r}=\int_{0}^{2 \pi} \vec{q} \cdot \overrightarrow{d r}\)
\(\implies \Gamma=\int_{0}^{2 \pi} u d x+v d y+w d z\)
\(\implies \Gamma = \int_{0}^{2 \pi} (0-2 \cos \theta)(-3 \sin \theta d \theta) + (6 \sin \theta - 2 \sin \theta - 2 )(3 \cos \theta d \theta) + 0\) \(\implies \Gamma= \int_{0}^{2 \pi} 6 \sin \theta \cos \theta d \theta + 12 \sin \theta \cos \theta d \theta\) \(\implies \Gamma= \int_{0}^{2 \pi} (2 \sin \theta \cos \theta \d \theta)\)
\(\implies \Gamma = \int_{0}^{2 \pi} \sin 2 \theta d \theta\) \(\implies \Gamma=0\)

Thus, the circulation is 0.


2) Prove that the necessary and sufficient conditions that the vortex lines may be at right angles to the stream lines are \(u\), \(v\), \(m=\mu\left(\dfrac{\partial \phi}{\partial x}, \dfrac{\partial \phi}{\partial y}, \dfrac{\partial \phi}{\partial z}\right)\) where \(\mu\) and \(\phi\) are functions of \(x\), \(y\), \(z\), \(t\).

[2013, 10M]

The differential equations of streamlines and vortex lines are respectively: \(\begin{array}{l}\frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w}\end{array} \quad \ldots (1)\) \(\begin{array}{2} \frac{d x}{\xi} =\frac{d y}{\eta}=\frac{d z}{\zeta}\end{array} \quad \ldots (2)\) (1) and (2) will intersect orthogonally iff \(\begin{array} u \xi+v \eta+w \zeta=0 \\ \implies \mu\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial 2}\right)+v\left(\frac{\partial u}{\partial z}-\frac{\partial \omega}{\partial x}\right)+\omega\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=0\end{array}\) This implies that \(u d x+v d y+w d z \text { is }\) a perfect differential.

\[\begin{array}{rl} \therefore u d x+v d y+w d z&=\mu d \psi \\ & =\mu\left(\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y+\frac{\partial \psi}{\partial z} d x\right). \\ \implies u, u ,w &=\mu\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)\end{array}\]

3) An infinite row of the equidistant rectilinear vortices are at distance \(a\) apart. The vortices are of the same numerical strength \(K\) but they are alternately of opposite signs. Find the Complex function that determines the velocity potential and the stream function.

[2011, 30M]

2011- Fluid

Let row of vertices be taken along \(x-axis\).

So, we have vortices of strength \(k\) each points \((0,0)\), \((\pm 2a,0)\), \((\pm 4a,0), \ldots\) and those of strength \(-k\) each at points \((\pm a,0)\), \((\pm 2a,0), \ldots\)

Thus, the complex potential of entire system is given by:

\[\begin{aligned} w & =\frac{i k}{2 n}\left[\operatorname{log} z+\operatorname{log}(z-2 a)+\operatorname{log}(z+2a)+\ldots\right] \\ &- \frac{i k}{2 n}\left[\operatorname{log}(z-a)+\log (z+a)+ log(z-3a)+\cdots \right] \\ &=\frac{ik}{2 \pi} \log \left( \frac{z\left[z^{2}-(2 a)^{2}\right]\left[z^{2}-(4 a)^{2}\right)] \ldots}{\left.\left[z^{2}-a^{2}\right]\left[{z}^{2}- (3a^{2}\right)\right] \ldots} \right) \\ &=\frac{i k}{2\pi} \log \left( \frac{\left.\frac{z}{2 a}\left[1-(\frac{z}{2 a}\right)^{2}\right]\left[1-\left(\frac{z}{4 a}\right)^{2}\right]c\ldots }{\left[1-\left(\frac{z}{a}\right)^{2}\right]\left[1-\left(\frac{z}{3 a}\right)^{2}\right) \ldots}\right) \\ &=\frac{i k}{2 \pi} \log \left( \frac{\sin \pi z / 2 a}{\cos (\pi 2 / 2 a)} \right) \\ \implies w &= \frac{i k}{2 \pi} \log \left(\tan \left(\frac{\pi z}{2 a}\right) \right) \end{aligned}\]

This will determine velocity potential and stream function.


4) In an incompressible fluid the vorticity at every point is constant in magnitude and direction, show that the components of velocity \(u\), \(v\), \(w\) are solutions of Laplace’s equation.

[2010, 12M]

Vorticity \((\Omega)=\) curl \(q\) \(\begin{aligned}\Omega &= \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix} \\ &= \left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \hat{\imath}+\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \hat{j} +\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \hat{k} \end{aligned}\)

Now, since \(\Omega\) is constant, therefore

\[\begin{aligned} \frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}&=c_{1} \ldots (1) \\ \frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}&=c_{2} \ldots (2) \\ \frac{\partial v}{d x}-\frac{\partial u}{\partial y}&=c_{3} \ldots (3) \end{aligned}\]

Differentiating (2) by \(z\) and (3) by\(y\) and subtracting, we get:

\[\begin{aligned} \frac{d^{2} u}{\partial z^{2}}-\frac{\partial^{2} w}{\partial z \partial x}-\frac{\partial^{2} v}{\partial y d x}+\frac{\partial^{2} u}{d y^{2}}&=0 \\ \frac{\partial^{2} u}{\partial y^{2}}+\frac{d^{2} u}{\partial z^{2}}-\frac{\partial^{2} v}{\partial x \partial y}-\frac{\partial^{2} w}{d x \partial z}&=0 \\ \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}-\frac{\partial}{\partial x}\left[\frac{\partial) v}{\partial y}+\frac{\partial w}{\partial z}\right] &= 0 \ldots (4) \end{aligned}\]

Acccording to the equation of continuity,

\(\begin{aligned} \frac{\partial u}{d x}+\frac{d v}{d y}+\frac{d w}{d z}=0 \\ \therefore-\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}+\frac{d w}{d z} \end{aligned}\) Putting this in (4), we get

\(\begin{aligned}\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}-\frac{\partial}{\partial x}\left(-\frac{\partial u}{\partial x}\right)=0 \end{aligned}\) \(=\quad \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^2 u}{\partial z^{2}}+\frac{\partial^{2} u}{\partial x^{2}}=0\) \(\therefore \nabla^{2} u=0\) Similarly we can show \(\nabla^{2} v=0\) and \(\nabla^{2} \omega=0\).

Hence proved.


5) When a pair of equal and opposite rectilinear vortices are situated in a long circle cylinder at equal distance from its axis, show that the path of each vortex is given by the equation \(\left(r^{2} \sin ^{2} \theta-b^{2}\right)\left(r^{2}-a^{2}\right)^{2}=4 a^{2} b^{2} r^{2} \sin ^{2} \theta\), \(\theta\) being measured from the line through the centre perpendicular to the joint of the vortices.

[2010, 30M]

Let the axis of the cylinder be \(x-axis\) and vortices are situated at \(P(r, \theta)\) and \((r,-\theta)\) respectively.

Also, let strength at \(P=k\) and strength at \(Q=-k\). Clearly, line \(PQ\) is perpendicular to the \(x-axis\).
The image system due to \(P\) consists: \(\rightarrow\) Vortex of strength \(-k\) at \(\frac{a^{2}}{r}\left(P^{\prime}\right),\) where \(a\) is radius of cylinder, \(\rightarrow\) Vortex at centre of cylinder of strength \(k\).

2010

Image systen due to \(Q\) consists: \(\rightarrow\) Vorex of strength \(k\) at \(\frac{a^{2}}{r}\text{say Q}\) \(\rightarrow\) Vortex of stremth \(-k\) at center of cylinder.

Vortices at the centre of cylinder cancel out.

At any point \(S(2)\), the complex potential \(W\) is given by:

\[\begin{aligned} W=\frac{i k}{2 \pi}[& \log \left(z-r e^{i \theta}\right)-\log \left(z-\frac{a^{2}}{r} e^{i \theta}\right)-\log \left(z-r e^{-i \theta}\right) \\ &\left.+\log \left(z-\frac{a^{2}}{r} e^{-i \theta}\right)\right] \end{aligned}\]

Complex potential at \(P(r, \theta)\) will be: \(W^{\prime}=W\) - potential due to \(P\) \(W^{\prime}=\frac{i k}{2 \pi}\left[-\log \left(z-\frac{a^{2}}{r} e^{i \theta}\right)-\log \left(z-i e^{-i \theta}\right)+\log \left(z-\frac{a^{2}}{r} e^{-i \theta}\right)\right]\) \(W^{\prime}=\frac{i k}{2 \pi}\left[\log \frac{\left(z-\frac{a^{2}}{r} e^{-i \theta}\right)}{\left(z-r e^{-i \theta}\right)\left(z-\frac{a^{2}}{r} e^{i \theta}\right)}\right]\) At \(P\), \(z=r e^{i \theta}\) \(W^{\prime}=\frac{i k}{2 \pi}\left[\log \frac{\left(r e^{i \theta}-\frac{a^{2}}{r} e^{-i \theta}\right)}{\left(r e^{i \theta}-r e^{-i \theta}\right)\left( e^{i \theta}-\frac{a^{2}}{r} e^{i \theta}\right)}\right]\) As \(W^{\prime}=\phi+i \psi\) \(\therefore \psi=\frac{k}{2 \pi} \log \frac{\mid r e^{i \theta}-\frac{a^{2} e^{-i \theta}}{r}|}{\left|r e^{i \theta}-r e^{-i \theta}\right| |r e^{i \theta}-\frac{a^{2}}{r}^{i \theta} \mid}\)

Streamlines are given by \(\psi=\) constant \(\frac{k}{2 \pi}\left[\log \frac{\vert r^{2} e^{i \theta}-a^{2} e^{-i \theta}\vert /r}{ \vert { 2 i r \sin \theta \mid \vert \frac{r^{2} e^{i \theta}-a^{2}e^{i \theta}} {r} } \vert}\right]=C_{1}\)

\(\log \frac{\mid\left(r^{2}+a^{2}\right) \sin \theta i+\left(r^{2}-a^{2}\right) \cos \theta|}{|2 i r \sin \theta|\left|\left(r^{2}-a^{2}\right) \cos \theta+i\left(r^{2}-a^{2}\right) \sin \theta\right|}=C_{2}\) \(\Rightarrow \frac{\left.\left(\left(r^{2}+a^{2}\right)^{2}-\left(r^{2}-a^{2}\right)^{2}\right) \sin ^{2} \theta+r^{2}-a^{2}\right)^{2}}{4 r^{2} \sin ^{2} \theta\left(r^{2}-a^{2}\right)^{2}}=C_{3}\) \(\begin{aligned} \frac{4 r^{2} a^{2} \sin ^{2} \theta+\left(r^{2}-a^{2}\right)^{2}}{4 r^{2} \sin ^{2} \theta\left(r^{2}-a^{2}\right)^{2}} &=C_{3} \\ 4 r^{2} a^{2} \sin ^{2} \theta+\left(c^{2}-a^{2}\right)^{2}=& C_{3} 4 r^{2} \sin ^{2} \theta \left(r^{2}-a^{2}\right)^{2} \end{aligned}\)

If we take \(C_{3}=\frac{1}{4 b^{2}}, b\) is constant \(4 r^{2} a^{2} \sin ^{2} \theta=\left(r^{2}-a^{2}\right)^{2}\left[4 r^{2} \sin ^{2} \theta \frac{1}{4 b^{2}}-1\right]\) \(4 r^{2} a^{2} \sin ^{2} \theta=\frac{\left(x^{2}-a^{2}\right)^{2}}{b^{2}}\left(r^{2} \sin ^{2} \theta-b^{2}\right)\) \({4 r^{2} a^{2} b^{2} \sin ^{2} \theta=\left(r^{2}-a^{2}\right)^{2}\left(r^{2} \sin ^{2} \theta-b^{2}\right)}\)

Hence, proved.


6) Prove that the necessary and sufficient condition for vortex lines and stream to be at right angles to each other is that \(u=\mu \dfrac{\partial \phi}{\partial x}\), \(v=\mu \dfrac{\partial \phi}{\partial y}\), \(w=\mu \dfrac{\partial \phi}{\partial z}\) where \(\mu\) and \(\phi\) are functions of \(x\), \(y\), \(z\) and \(t\).

[2005, 12M]

The differential equations of streamlines and vortex lines are respectively: \(\begin{array}{l}\frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w}\end{array} \quad \ldots (1)\) \(\begin{array}{2} \frac{d x}{\xi} =\frac{d y}{\eta}=\frac{d z}{\zeta}\end{array} \quad \ldots (2)\) (1) and (2) will intersect orthogonally iff \(\begin{array} u \xi+v \eta+w \zeta=0 \\ \implies \mu\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial 2}\right)+v\left(\frac{\partial u}{\partial z}-\frac{\partial \omega}{\partial x}\right)+\omega\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=0\end{array}\) This implies that \(u d x+v d y+w d z \text { is }\) a perfect differential.

\[\begin{array}{rl} \therefore u d x+v d y+w d z&=\mu d \psi \\ & =\mu\left(\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y+\frac{\partial \psi}{\partial z} d x\right). \\ \implies u, u ,w &=\mu\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)\end{array}\]

7) In an incompressible fluid the vorticity at every point is constant in magnitude and direction. Do the velocity components satisfy the Laplace equation? Justify.

[2004, 12M]


< Previous Next >


Back to top Back to Top

Copyright © 2020 UPSC Maths WebApp.