Link Search Menu Expand Document

Laplace Transform

We will cover following topics

Laplace And Inverse Laplace Transforms

Let a function \(f\) be defined for \(t \geq 0\). Then, Laplace Transform of \(f\) is defined as:

\[F(s)=\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t\]

for those values of \(s\) where this integral exists.

Also, the inverse Laplace Transform is defined as:

\[f(t)=\mathcal{L}^{-1}(F(s))\]

First Shifting Theorem: If \(\mathcal{L}(f(t))=F(s)\), then \(\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a)\).

Laplace Transforms Of Elementary Functions

The unit step function \(u_{a}(t)\) is defined as:

\[u_{a}(t)=\left\{\begin{array}{ll}{0,} & {t< a} \\ {1,} & {t>a}\end{array}\right.\]

Laplace Transform of \(u_{a}(t)\),

\[\mathcal{L}\left(u_{a}(t)\right)=e^{-a s} / s\]

Second Shifting Theorem: If \(\mathcal{L}(f(t))=F(s)\), then

\[\mathcal{L}\left(u_{a}(t) f(t-a)\right)=e^{-a s} F(s)\]

Theorem: Let \(f(t)\) be continuous for \(t \geq 0\) and is of exponential order. Further, suppose that \(f\) is differentiable with \(f'\) piecewise continuous in \([0, \infty)\). Then,

\[\mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0)\]

Also,

\(\mathcal{L}\left(f^{(n)}\right)\)=\(s^{n} \mathcal{L}(f)\)-\(s^{n-1} f(0)\)-\(s^{n-2} f^{(1)}(0)\)-\(\cdots\)-\(f^{(n-1)}(0)\)


Theorem: Let \(F(s)\) be the Laplace Transform of \(f\). If \(f\) is piecewise continuous in \([0, \infty)\) and is of exponential order, then

\[\mathcal{L}\left(\int_{0}^{t} f(\tau) d \tau\right)=\dfrac{F(s)}{s}\]

Theorem: Let \(F(s)\) be the Laplace Transform of \(f\), then

\[\mathcal{L}(-t f(t))=F^{\prime}(s)\]

Theorem: Let \(F(s)\) be the Laplace Transform of \(f\) and the limit of \(f(t)/t\) exists as \(t \rightarrow 0^{+}\), then

\[\mathcal{L}\left(\dfrac{f(t)}{t}\right)=\int_{s}^{\infty} F(p) d p\]

Initial Value Problems

Theorem for Periodic Functions: Let \(f :[0, \infty) \rightarrow \mathbb{R}\) be a periodic function with period \(T>0\), i.e., \(f(t+T)=f(t) \text{ } \forall \text{ } t \geq 0\). Then,

\[F(s)=\dfrac{\int_{0}^{T} f(t) e^{-s t} d t}{1-e^{-s T}}\]

Convolution: Let \(f\) and \(g\) be two functions defined in \([0, \infty)\).

Then, the convolution of \(f\) and \(g\),is defined by:

\[(f * g)(t)=\int_{0}^{\infty} f(\tau) g(t-\tau) d \tau\]

Convolution Theorem: The convolution \(f*g\) has the Laplce Transform property:

\[\mathcal{L}((f * g)(t))=F(s) G(s)\]

PYQs

Laplace And Inverse Laplace Transforms

1) Find the Laplace transforms of \(t^{-1/2}\) and \(t^{-1/2}\). Prove that the Laplace transform of \(t^{n+1/2}\), where \(n\in N\), is

\[\dfrac{\Gamma{(n+1+\dfrac{1}{2})}}{s^{n+1+\dfrac{1}{2}}}\]

[2019, 10M]


2) Find the Laplace transform of \(f(t)=\dfrac{1}{\sqrt{t}}\).

[2018, 5M]


3) Find the inverse Laplace transform of \(\dfrac{5s^2+3s-16}{(s-1)(s-2)(s-3)}\).

[2018, 5M]


4) Obtain Laplace Inverse transform of \(\left\{\ln \left(1+\dfrac{1}{s^{2}}\right)+\dfrac{s}{s^{2}+25} e^{-5 s}\right\}\).

[2015, 6M]


5) Find the inverse Laplace transform of \(F(s)=1 n\left(\dfrac{s+1}{s+s}\right)\).

[2009, 20M]

Initial Value Problems

1) Solve the initial value problem
\(y''-5y'+4y=e^{2t}\)
\(y(0)=\dfrac{19}{20}, y'(0)=\dfrac{8}{3}\)

[2018, 13M]


2) Solve the following initial value problem using Laplace transform:

\[\dfrac{d^{2} y}{d x^{2}}+9 y=r(x), y(0)=0, y^{\prime}(0)=4\]

where

\[r(x)=\left\{\begin{array}{ll}{8 \sin x} & {\text { if } 0< x < \pi} \\ {0} & {\text { if } x \geq \pi}\end{array}\right.\]

[2017, 17M]


3) Using Laplace transformation, solve the following: \(y^{\prime \prime}-2 y^{\prime}-8 y=0\), \(y(0)=3\), \(y^{\prime}(0)=6\).

[2016, 10M]


4) Using Laplace transform, solve \(y^{\prime \prime}+y=t\), \(y(0)=1\), \(y^{\prime}(0)=-2\).

[2015, 6M]


5) Solve the initial value problem \(\dfrac{d^{2} y}{d t^{2}}+y=8 e^{-2 t} \sin t\), \(y(0)=0\), \(y^{\prime}(0)=0\) by using Laplace transform.

[2014, 20M]


6) By using Laplace transform method, solve the differential equation \(\left(D^{2}+n^{2}\right) x=a \sin (n t+\alpha)\) \(\left( D^{2}=\dfrac{d^{2}}{d t^{2}} \right)\) subject to the initial conditions \(x=0\) and \(\dfrac{d x}{d t}=0\), in which \(a\), \(n\) and \(\alpha\) are constants.

[2013, 15M]


7) Using Laplace transforms, solve the initial value problem \(y^{\prime \prime}+2 y^{\prime}+y=e^{-t}\), \(y(0)=-1\), \(y^{\prime}(0)=1\).

[2012, 12M]


8) Use Laplace transform method to solve the following initial value problem: \(\dfrac{d^{2} x}{d t^{2}}-2 \dfrac{d x}{d t}+x=e^{t}\), \(x(0)=2\) and \(\left.\dfrac{d y}{d t}\right \vert_{t=0}=-1\).

[2011, 15M]


9) Using Laplace transform, solve the initial value problem \(y^{\prime \prime}-3 y^{\prime}+2 y=4 t+e^{3 t}\), \(y(0)=1\), \(y^{\prime}(0)=-1\).

[2008, 15M]


< Previous Next >


Back to top Back to Top

Copyright © 2020 UPSC Maths WebApp.