Link Search Menu Expand Document

Equation of Continuity

We will cover following topics

Equation Of Continuity


PYQs

Equation Of Continuity

1) For an incompressible fluid flow, two components of velocity \((u,v,w)\) are given by \(u=x^2+2y^2+3z^2\), \(v=x^2y-y^2z+zx\). Determine the third component \(w\) so that they satisfy the equation of continuity. Also, find the \(z-component\) of acceleration.

[2018, 10M]

Using the continuity equation in cartesian coordinates:

\(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0\)
\(\implies 2 x+x^{2}-2 y z+\frac{\partial w}{\partial z}=0\)
\(\implies \quad \frac{\partial w}{\partial z}=2 y z-2 x-x^{2}\)
Integrating wrt \(z\), we get:
\(w=y z^{2}-2 x z-x^{2} z+f(x, y)\)

\(\implies\) The \(z\) component of acceleration:
\(\begin{aligned} a_{z} &=(q \cdot \nabla) w+\frac{\partial \omega}{\partial t} \\ &=u \frac{\partial w}{\partial x}+v\frac{\partial w}{\partial y}+w \frac{\partial \omega}{\partial z} \end{aligned}\)

Therefore,

\[\begin{aligned} a_{z} &=\left(x^{2}+2 y^{2}+3 z^{2}\right)\left(\frac{\partial f}{\partial x}-2 z-2 x z\right) \\ &+\left(x^{2} y-y^{2} z+x z\right)\left(\frac{\partial f}{\partial y}+z^{2}\right) \\ &+\left(y z^{2}-2 x z-x^{2} z+f(x, y)\right)\left(2 y z-2 z-x^{2}\right) \end{aligned}\]

2) Show that \(\left(\dfrac{x^{2}}{a^{2}}\right) \cos ^{2} t+\left(\dfrac{y^{2}}{b^{2}}\right) \sec ^{2} t=1\) is a possible form for the boundary surface of a liquid.

[2007, 12M]


3) Show that: \(u=\dfrac{-2 x y z}{\left(x^{2}+y^{2}\right)^{2}}\), \(v=\dfrac{\left(x^{2}-y^{2}\right) z}{\left(x^{2}+y^{2}\right)^{2}}\), \(w=\dfrac{y}{x^{2}+y^{2}}\) are the velocity components of a possible liquid motion. Is this motion irrotational?

[2002, 15M]

Here, we have:

\[\begin{aligned}\frac{\partial u}{\partial x}&=-2 y z \frac{1 \cdot\left(x^{2}+y^{2}\right)^{2}-x \cdot 2\left(x^{2}+y^{2}\right) \cdot 2 x}{\left(x^{2}+y^{2}\right)^{4}}\\ &=-2 y z \frac{x^{2}+y^{2}-4 x^{2}}{\left(x^{2}+y^{2}\right)^{3}}\\ &=-2 y z \frac{y^{2}-3 x^{2}}{\left(x^{2}+y^{2}\right)^{3}}\end{aligned}\] \[\begin{aligned} \frac{\partial v}{\partial y}&=z \frac{-2 y\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}+y^{2}\right) \cdot 2 y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{4}} \\&=-2 y z \frac{x^{2}+y^{2}+2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\\ &=-2 y z \frac{3 x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{3}} \end{aligned}\]

and

\[\partial w / \partial z=0\]

Hence, the equation of continuity \(\partial u / \partial x+\partial v / \partial y+\partial w / \partial z=0\) is satisfied and so the liquid motion is possible.

Furthermore, we have

\[\begin{aligned} \Omega_{x}&=\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\\&=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\\&=0 \\ \Omega_{y}&=\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\\&=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}\\&=0 \\ \Omega_{z}&=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\\&=\frac{2 x z\left(3 y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}-\frac{2 x z\left(3 y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\\&=0 \end{aligned}\] \[\therefore \quad \partial w / \partial y=\partial v / \partial z, \quad \partial u / \partial z=\partial w / \partial x, \quad \partial v / \partial x=\partial u / \partial y\]

and hence the motion is irrotational.


< Previous Next >


Back to top Back to Top

Copyright © 2020 UPSC Maths WebApp.